Webinar: Assessing Clinical and Economic Benefits of Biocomputational Models

27 March 2012, 09:00 PDST/13:00 EST/18:00 CEST (UTC +02:00).
The economic assessment method described reflects the latest research from the NMS Physiome project, a cooperation of two of the largest global research projects focusing on predictive, personalised and integrative musculoskeletal medicine: the Osteoporotic Virtual Physiological Human (VPHOP) project, and the Center for Physics-based Simulation of Biological Structures (SIMBIOS) at Stanford University.

The Virtual Physiological Human (VPH) is a framework of methods and technologies that, once fully established, is expected to make possible the virtual investigation of the human body as a whole. Started in Europe in 2005, it has rapidly grown to become one of the research priorities of the Information and Communication Technologies Programme of the EU Seventh Framework Programme for Research and Technological Development, which runs from 2007 to 2013. In the US, VPH-type research is funded by all the federal agencies that participate in the Interagency Modeling and Analysis Group (IMAG), whose grantees are coordinated in the Multi-Scale Modeling (MSM) consortium.

NMS Physiome is an international project co-funded by the European Commission Seventh Framework Programme for Research and Technological Development. The Webinar is hosted by SIMBIOS, Stanford University.

How do you assess the impact of biocomputational models?
Karl Stroetmann and Rainer Thiel, empirica Communication and Technology Research, Bonn, Germany.

In this webinar, you will learn about general principles to evaluate the prospective economic and clinical benefits of simulation methods. Webinar organisers will show how this approach enables you to:

  • Assess simulation research and translate technical capability into quantitative estimates of costs and benefits that go beyond model validation
  • Gain a better understanding about the impact such work can have on future health care service delivery and clinical practice
  • Demonstrate the added value of simulation research through clear measures of clinical benefits and the development of business cases
  • More effectively decide what aspects of the model should be included or excluded

The webinar is targeted at biocomputational modellers and researchers as well as RTD funding agencies in the field of Virtual Physiological Human and Physiome.

Duration: 60 minutes.

To register for the event, please visit:
https://stanford.webex.com/stanford/onstage/g.php?d=925320571&t=a

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...