AI Has Helped to Better Understand How Human Brain Performs Face Recognition

Scientists from Salk Institute (USA), Skoltech (Russia), and Riken Center for Brain Science (Japan) investigated a theoretical model of how populations of neurons in the visual cortex of the brain may recognize and process faces and their different expressions and how they are organized. The research was recently published in Neural Computation and highlighted on its cover.

Humans have amazing abilities to recognize a huge number of individual faces and interpret facial expressions extremely well. These abilities play a key role in human social interactions. However, how the human brain processes and stores such complex visual information is still poorly understood.

Skoltech scientists Anh-Huy Phan and Andrzej Cichocki, with their colleagues from the US and Japan, Sidney Lehky and Keiji Tanaka, decided to better understand how the visual cortex processes and stores information related to face recognition. Their approach was based on the idea that a human face can be conceptually represented as a collection of parts or components, including eyes, eyebrow, nose, mouth, etc. Using a machine learning approach, they applied a novel tensor algorithm to decompose faces into a set of components or images called tensorfaces as well as their associated weights, and represented faces by linear combinations of those components. In this way, they build a mathematical model describing the work of the neurons involved in face recognition.

"We used novel tensor decompositions to represent faces as a set of components with specified complexity, which can be interpreted as model face cells and indicate that human face representations consist of a mixture of low- and medium-complexity face cells," said Skoltech Professor Andrzej Cichocki.

Sidney R Lehky, Anh Huy Phan, Andrzej Cichocki, Keiji Tanaka.
Face Representations via Tensorfaces of Various Complexities.
Neural Computation, Volume 32, Issue 2, 2020. doi: 10.1162/neco_a_01258.

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...