It isn’t a matter of one needle puncture. Many children coming through the doors of Children's Hospital Los Angeles are seen for chronic conditions and often require frequent visits. Painful procedures - like a blood draw or catheter placement - can cause anxiety and fear in patients. Now, a study published in JAMA Network Open shows that virtual reality can decrease pain and anxiety in children undergoing intravenous (IV) catheter placement.

Determining the 3D shapes of biological molecules is one of the hardest problems in modern biology and medical discovery. Companies and research institutions often spend millions of dollars to determine a molecular structure - and even such massive efforts are frequently unsuccessful.

Artificial intelligence (AI) will fundamentally change medicine and healthcare: Diagnostic patient data, e.g. from ECG, EEG or X-ray images, can be analyzed with the help of machine learning, so that diseases can be detected at a very early stage based on subtle changes. However, implanting AI within the human body is still a major technical challenge.

A novel artificial intelligence blood testing technology developed by researchers at the Johns Hopkins Kimmel Cancer Center was found to detect over 90% of lung cancers in samples from nearly 800 individuals with and without cancer.

The test approach, called DELFI (DNA evaluation of fragments for early interception), spots unique patterns in the fragmentation of DNA shed from cancer cells circulating in the bloodstream.

A team of researchers at Washington University School of Medicine have developed a deep learning model that is capable of classifying a brain tumor as one of six common types using a single 3D MRI scan, according to a study published in Radiology: Artificial Intelligence.

Brain-computer interfaces (BCIs) are emerging assistive devices that may one day help people with brain or spinal injuries to move or communicate. BCI systems depend on implantable sensors that record electrical signals in the brain and use those signals to drive external devices like computers or robotic prosthetics.

A new study shows that artificial intelligence networks based on human brain connectivity can perform cognitive tasks efficiently.

By examining MRI data from a large Open Science repository, researchers reconstructed a brain connectivity pattern, and applied it to an artificial neural network (ANN). An ANN is a computing system consisting of multiple input and output units, much like the biological brain.

More Digital Health News ...

Page 97 of 257